skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sasan, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we introduce a novel Communication and Obfuscation Management Architecture (COMA) to handle the storage of the obfuscation key and to secure the communication to/from untrusted yet obfuscated circuits. COMA addresses three challenges related to the obfuscated circuits: First, it removes the need for the storage of the obfuscation unlock key at the untrusted chip. Second, it implements a mechanism by which the key sent for unlocking an obfuscated circuit changes after each activation (even for the same device), transforming the key into a dynamically changing license. Third, it protects the communication to/from the COMA protected device and additionally introduces two novel mechanisms for the exchange of data to/from COMA protected architectures: (1) a highly secure but slow double encryption, which is used for exchange of key and sensitive data (2) a high-performance and low-energy yet leaky encryption, secured by means of frequent key renewal. We demonstrate that compared to state-of-the-art key management architectures, COMA reduces the area overhead by 14%, while allowing additional features including unique chip authentication, enabling activation as a service (for IoT devices), reducing the side channel attack on key management architecture, and providing two new means of the secure communication to/from an COMA-secured untrusted chip. 
    more » « less